What's the Future
  • Home
  • Events
    • Event 1
    • Event 2
    • Interview #1
    • Interview #2
    • Event 3
    • Event 4
  • About us
  • Team
  • Articles
    • Medicine >
      • MD/DO
      • Smart Implants: The Future of Medical Devices
      • Artificial Intelligence in Drug Discovery: Accelerating the Search for New Medicines
      • High-Throughput Screening: Finding Needles in Haystacks
      • Liquid Biopsy: A Non-Invasive Way to Detect Cancer
      • Artificial Intelligence in Medical Imaging: Enhancing Diagnosis
      • Robotic Surgery: Precision and Minimally Invasive Procedures
      • Organ-on-a-Chip: Mimicking Human Organs for Drug Testing
      • The Gene-Editing Technology That Could Cure Diseases
      • AI Healthcare: Revolutionizing Diagnosis and Treatment
      • HIV/AIDS Treatment
      • Proton Therapy: A Precise Form of Radiation Therapy
      • Organ Transplantation
      • Harnessing the Immune System to Fight Cancer
      • The Ancient Art of Acupuncture: A Modern Perspective
      • Telemedicine: The Future of Remote Healthcare
      • The Future of Clot-Busting
      • Targeted Therapy: Precision Medicine for Cancer Treatmente
      • Monitoring Health in Real-TimeNew Page
      • Microfluidics in Drug Development: Small-Scale Solutions for Big Problems
      • 3D Printing in Medicine
      • Breast Cancer
      • Nanomedicine
      • COVID-19: The Delta Variant
      • Genetic Engineering
      • Surviving the Next Pandemic
      • Update: Cancer
      • Alternate Personalities
      • Internet Overuse
      • Cloning
      • Covid vaccine
      • Consciousness
      • mask
      • Deja Vu
    • Methodological Innovation in Research >
      • High-Throughput Screening: Accelerating Material Discovery
      • Machine Learning in Materials Science: Accelerating Discovery
      • In Situ Characterization: Real-Time Analysis of Materials
      • Cryo-Electron Microscopy: Visualizing Materials at the Atomic Level
      • Computational Materials Design: Predicting Properties with Simulations
      • Additive Manufacturing: 3D Printing of Advanced Materials
      • Combinatorial Materials Science: High-Speed Material Discovery
      • Nanofabrication: Building Materials at the Nanoscale
      • Self-Assembly: Nature-Inspired Material Design
      • Biomimetic Materials: Learning from Nature
    • New Technologies >
      • Advancements in Renewable Energy Technologies
      • Deep Learning: How AI Learns Like a Human
      • Quantum Computing: The Supercomputer of the Future
      • The Evolution of Wearable Technology
      • The Technology and Challenges of Autonomous Vehicles
      • The New Age of Biotech: CRISPR
      • The Future of Transport
      • Brain-Computer Interfaces (BCIs): Connecting Minds to Machines
      • Augmented Reality (AR): Blending the Digital and Physical Worlds
      • Blockchain and Decentralization: The Future of Trust Online
      • Nanotechnology: The Tiny Science with Big Possibilities
      • Innovations in Human-Machine Interaction
      • War
      • LiDAR
      • 3D printing
      • New energy
      • alphago
      • How Can Virtual Reality Change The World?
      • Metaverse
      • Neuralink
      • Spiral Engine
      • Optimus
    • Future Materials >
      • Aerogels: The Lightest Solids on Earth
      • Metamaterials: Engineering the Impossible
      • Biodegradable Plastics: A Sustainable Future
      • Graphene: The Wonder Material of the 21st Century
      • Carbon Nanotubes: The Building Blocks of Future Technologies
      • Biomaterials: Bridging the Gap Between Biology and Engineering
      • Nanomaterials: The Power of the Very Small
      • Self-Healing Materials: The Future of Durability
      • Shape Memory Alloys: Materials with a Memory
      • Smart Materials: Responding to Their Environment
      • Baking Soda
      • Acids and Bases--Brief
      • Esters and Applications
      • Iodine Clock Reaction
      • Haber Process
      • Elemental Facts
      • Elemental Facts Pt. 2
      • Hall Process
      • Doping
      • Flame Tests
      • Carbon Snake Experiment
      • Chemical Traffic Light
      • Polymers
      • Thermometers
      • Calorimetry
    • The Digital Age >
      • Artificial Intelligence
      • Data Trust
      • Virtual Reality
      • The Popularity of TikTok
      • Blockchain Technology
      • Cloud Computing
      • Edge Computing
      • 5G Technology
      • Quantum Computing
      • Social Media
      • Ecommerce
      • Big data
      • Cybersecurity
    • Climate Change >
      • Airborne CO₂ Capture Technology
      • Global Warming
      • Whale and Dolphin death
    • Jobs >
      • Jobs in coming 10years
      • Telemarketers
      • Bookkeeping clerk
      • Driver
      • benefits manager
      • Receptionist
      • Couriers
      • proofreader
      • Computer support specialist
      • Market research analyst
      • Retail salespeople
      • Advertising Salespeople
      • Human resource manager
      • Writer
      • Sales manager
      • Chief executives
      • Marketing Manager
      • Photographers
      • Esport
    • Space >
      • Mars
    • Sports >
      • women sports
  • Contact
  • New Page
  • Home
  • Events
    • Event 1
    • Event 2
    • Interview #1
    • Interview #2
    • Event 3
    • Event 4
  • About us
  • Team
  • Articles
    • Medicine >
      • MD/DO
      • Smart Implants: The Future of Medical Devices
      • Artificial Intelligence in Drug Discovery: Accelerating the Search for New Medicines
      • High-Throughput Screening: Finding Needles in Haystacks
      • Liquid Biopsy: A Non-Invasive Way to Detect Cancer
      • Artificial Intelligence in Medical Imaging: Enhancing Diagnosis
      • Robotic Surgery: Precision and Minimally Invasive Procedures
      • Organ-on-a-Chip: Mimicking Human Organs for Drug Testing
      • The Gene-Editing Technology That Could Cure Diseases
      • AI Healthcare: Revolutionizing Diagnosis and Treatment
      • HIV/AIDS Treatment
      • Proton Therapy: A Precise Form of Radiation Therapy
      • Organ Transplantation
      • Harnessing the Immune System to Fight Cancer
      • The Ancient Art of Acupuncture: A Modern Perspective
      • Telemedicine: The Future of Remote Healthcare
      • The Future of Clot-Busting
      • Targeted Therapy: Precision Medicine for Cancer Treatmente
      • Monitoring Health in Real-TimeNew Page
      • Microfluidics in Drug Development: Small-Scale Solutions for Big Problems
      • 3D Printing in Medicine
      • Breast Cancer
      • Nanomedicine
      • COVID-19: The Delta Variant
      • Genetic Engineering
      • Surviving the Next Pandemic
      • Update: Cancer
      • Alternate Personalities
      • Internet Overuse
      • Cloning
      • Covid vaccine
      • Consciousness
      • mask
      • Deja Vu
    • Methodological Innovation in Research >
      • High-Throughput Screening: Accelerating Material Discovery
      • Machine Learning in Materials Science: Accelerating Discovery
      • In Situ Characterization: Real-Time Analysis of Materials
      • Cryo-Electron Microscopy: Visualizing Materials at the Atomic Level
      • Computational Materials Design: Predicting Properties with Simulations
      • Additive Manufacturing: 3D Printing of Advanced Materials
      • Combinatorial Materials Science: High-Speed Material Discovery
      • Nanofabrication: Building Materials at the Nanoscale
      • Self-Assembly: Nature-Inspired Material Design
      • Biomimetic Materials: Learning from Nature
    • New Technologies >
      • Advancements in Renewable Energy Technologies
      • Deep Learning: How AI Learns Like a Human
      • Quantum Computing: The Supercomputer of the Future
      • The Evolution of Wearable Technology
      • The Technology and Challenges of Autonomous Vehicles
      • The New Age of Biotech: CRISPR
      • The Future of Transport
      • Brain-Computer Interfaces (BCIs): Connecting Minds to Machines
      • Augmented Reality (AR): Blending the Digital and Physical Worlds
      • Blockchain and Decentralization: The Future of Trust Online
      • Nanotechnology: The Tiny Science with Big Possibilities
      • Innovations in Human-Machine Interaction
      • War
      • LiDAR
      • 3D printing
      • New energy
      • alphago
      • How Can Virtual Reality Change The World?
      • Metaverse
      • Neuralink
      • Spiral Engine
      • Optimus
    • Future Materials >
      • Aerogels: The Lightest Solids on Earth
      • Metamaterials: Engineering the Impossible
      • Biodegradable Plastics: A Sustainable Future
      • Graphene: The Wonder Material of the 21st Century
      • Carbon Nanotubes: The Building Blocks of Future Technologies
      • Biomaterials: Bridging the Gap Between Biology and Engineering
      • Nanomaterials: The Power of the Very Small
      • Self-Healing Materials: The Future of Durability
      • Shape Memory Alloys: Materials with a Memory
      • Smart Materials: Responding to Their Environment
      • Baking Soda
      • Acids and Bases--Brief
      • Esters and Applications
      • Iodine Clock Reaction
      • Haber Process
      • Elemental Facts
      • Elemental Facts Pt. 2
      • Hall Process
      • Doping
      • Flame Tests
      • Carbon Snake Experiment
      • Chemical Traffic Light
      • Polymers
      • Thermometers
      • Calorimetry
    • The Digital Age >
      • Artificial Intelligence
      • Data Trust
      • Virtual Reality
      • The Popularity of TikTok
      • Blockchain Technology
      • Cloud Computing
      • Edge Computing
      • 5G Technology
      • Quantum Computing
      • Social Media
      • Ecommerce
      • Big data
      • Cybersecurity
    • Climate Change >
      • Airborne CO₂ Capture Technology
      • Global Warming
      • Whale and Dolphin death
    • Jobs >
      • Jobs in coming 10years
      • Telemarketers
      • Bookkeeping clerk
      • Driver
      • benefits manager
      • Receptionist
      • Couriers
      • proofreader
      • Computer support specialist
      • Market research analyst
      • Retail salespeople
      • Advertising Salespeople
      • Human resource manager
      • Writer
      • Sales manager
      • Chief executives
      • Marketing Manager
      • Photographers
      • Esport
    • Space >
      • Mars
    • Sports >
      • women sports
  • Contact
  • New Page
Picture
                                                          Liquid Biopsy: A Non-Invasive Way to Detect Cancer
Introduction: Traditionally, diagnosing cancer has required invasive procedures like biopsies, where a tissue sample is taken from the tumor. However, a new technology called liquid biopsy offers a non-invasive alternative by detecting cancer through a simple blood test. In this article, we’ll explore how liquid biopsy works, its benefits, and its potential to revolutionize cancer diagnosis and treatment.
How Liquid Biopsy Works:
Liquid biopsy detects cancer by analyzing circulating tumor DNA (ctDNA), which is released into the bloodstream by cancer cells. The test can identify genetic mutations, monitor treatment response, and detect cancer recurrence.
Benefits of Liquid Biopsy:
  • Non-Invasive: Unlike traditional biopsies, liquid biopsy only requires a blood draw, making it less painful and risky for patients.
  • Early Detection: Liquid biopsy can detect cancer at an early stage, when it is more treatable.
  • Real-Time Monitoring: Liquid biopsy can monitor how a tumor is responding to treatment in real-time, allowing doctors to adjust the treatment plan as needed.
  • Personalized Treatment: Liquid biopsy can identify specific genetic mutations in a tumor, helping doctors choose the most effective targeted therapy.
Challenges of Liquid Biopsy:
  • Sensitivity: Liquid biopsy may not detect all cancers, especially in the early stages when ctDNA levels are low.
  • Cost: Liquid biopsy can be expensive, and not all patients have access to it.
  • Regulation: The use of liquid biopsy is still relatively new, and regulatory frameworks are still being developed.
The Future of Liquid Biopsy: As liquid biopsy technology continues to improve, it is likely to play a bigger role in cancer diagnosis and treatment. Researchers are working on increasing the sensitivity of liquid biopsy and expanding its use to detect a wider range of cancers.

Further Reading:
  1. National Cancer Institute (NCI) - Liquid Biopsy
    https://www.cancer.gov/
  2. American Cancer Society - Liquid Biopsy
    https://www.cancer.org/
  3. Cancer Research UK - Liquid Biopsy
    https://www.cancerresearchuk.org/
  4. Nature - Liquid Biopsy
    https://www.nature.com/
  5. ScienceDaily - Liquid Biopsy for Cancer
    https://www.sciencedaily.com/

                                                                                                                                                                                               Contributed by Queenie Dai


Proudly powered by Weebly