Have you ever wonder how did banks and insurance companies keep tract of their consumer's information or how did government analysis the information of their citizens? There's millions of informations that these institution needs to keep tract of, and the only way for them to be able to do this is through "Big Data."
What is Big Data?
Just like its name, big data is big. In another word, it is the analysis of huge amount of datas.
The definition of big data is data that contains greater variety, arriving in increasing volumes and with more velocity. This is also known as the three Vs.
Put simply, big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can’t manage them. But these massive volumes of data can be used to address business problems you wouldn’t have been able to tackle before.
The definition of big data is data that contains greater variety, arriving in increasing volumes and with more velocity. This is also known as the three Vs.
Put simply, big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can’t manage them. But these massive volumes of data can be used to address business problems you wouldn’t have been able to tackle before.
The Three Vs
Gig data gained momentum in the early 2000s when industry analyst Doug Laney articulated the now-mainstream definition of big data as the three V’s:
Volume: The amount of data matters. With big data, you’ll have to process high volumes of low-density, unstructured data. This can be data of unknown value, such as Twitter data feeds, clickstreams on a web page or a mobile app, or sensor-enabled equipment. For some organizations, this might be tens of terabytes of data. For others, it may be hundreds of petabytes.
Velocity: Velocity is the fast rate at which data is received and (perhaps) acted on. Normally, the highest velocity of data streams directly into memory versus being written to disk. Some internet-enabled smart products operate in real time or near real time and will require real-time evaluation and action.
Variety: Variety refers to the many types of data that are available. Traditional data types were structured and fit neatly in a relational database. With the rise of big data, data comes in new unstructured data types. Unstructured and semistructured data types, such as text, audio, and video, require additional preprocessing to derive meaning and support metadata.
Volume: The amount of data matters. With big data, you’ll have to process high volumes of low-density, unstructured data. This can be data of unknown value, such as Twitter data feeds, clickstreams on a web page or a mobile app, or sensor-enabled equipment. For some organizations, this might be tens of terabytes of data. For others, it may be hundreds of petabytes.
Velocity: Velocity is the fast rate at which data is received and (perhaps) acted on. Normally, the highest velocity of data streams directly into memory versus being written to disk. Some internet-enabled smart products operate in real time or near real time and will require real-time evaluation and action.
Variety: Variety refers to the many types of data that are available. Traditional data types were structured and fit neatly in a relational database. With the rise of big data, data comes in new unstructured data types. Unstructured and semistructured data types, such as text, audio, and video, require additional preprocessing to derive meaning and support metadata.
Why is it important?
The importance of big data doesn’t simply revolve around how much data you have. The value lies in how you use it. By taking data from any source and analyzing it, you can find answers that 1) streamline resource management, 2) improve operational efficiencies, 3) optimize product development, 4) drive new revenue and growth opportunities and 5) enable smart decision making. When you combine big data with high-performance analytics, you can accomplish business-related tasks such as:
- Determining root causes of failures, issues and defects in near-real time.
- Spotting anomalies faster and more accurately than the human eye.
- Improving patient outcomes by rapidly converting medical image data into insights.
- Recalculating entire risk portfolios in minutes.
- Sharpening deep learning models' ability to accurately classify and react to changing variables.
- Detecting fraudulent behavior before it affects your organization.
Sources:
https://www.sas.com/en_us/insights/big-data/what-is-big-data.html
https://www.oracle.com/big-data/what-is-big-data/
https://www.sas.com/en_us/insights/big-data/what-is-big-data.html
https://www.oracle.com/big-data/what-is-big-data/